Search results for " 42B35"

showing 2 items of 2 documents

Radial Maximal Function Characterizations of Hardy Spaces on RD-Spaces and Their Applications

2009

Let ${\mathcal X}$ be an RD-space with $\mu({\mathcal X})=\infty$, which means that ${\mathcal X}$ is a space of homogeneous type in the sense of Coifman and Weiss and its measure has the reverse doubling property. In this paper, we characterize the atomic Hardy spaces $H^p_{\rm at}(\{\mathcal X})$ of Coifman and Weiss for $p\in(n/(n+1),1]$ via the radial maximal function, where $n$ is the "dimension" of ${\mathcal X}$, and the range of index $p$ is the best possible. This completely answers the question proposed by Ronald R. Coifman and Guido Weiss in 1977 in this setting, and improves on a deep result of Uchiyama in 1980 on an Ahlfors 1-regular space and a recent result of Loukas Grafakos…

Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsMathematics::Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics42B30 (Primary) 42B25 (Secondary) 42B35Functional Analysis (math.FA)
researchProduct

On Limits at Infinity of Weighted Sobolev Functions

2022

We study necessary and sufficient conditions for a Muckenhoupt weight $w \in L^1_{\mathrm{loc}}(\mathbb R^d)$ that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions $u \in W^{1,p}_{\mathrm{loc}}(\mathbb R^d,w)$ with a $p$-integrable gradient $|\nabla u|\in L^p(\mathbb R^d,w)$. The question is shown to subtly depend on the sense in which the limit is taken. First, we fully characterize the existence of radial limits. Second, we give essentially sharp sufficient conditions for the existence of vertical limits. In the specific setting of product and radial weights, we give if and only if statements. These generalize and give new proofs for results of…

matematiikkaMetric Geometry (math.MG)46E36 (46E30 26B35 42B35)MuckenhouptFunctional Analysis (math.FA)Mathematics - Functional AnalysisSobolevMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsAsymptoticSobolev functionsLimitdifferentiaaliyhtälötfunktiotAnalysisAnalysis of PDEs (math.AP)
researchProduct